
Name		Date	Class			
Additional P	ractice		Investigation 2			
			Looking for Pythagoras			
In Problem 2.3, you found the lengths of line segments drawn on 5-dot-by-5-dot grids. Some of those lengths were written as square roots, such as $\sqrt{2}$. When you enter $\sqrt{2}$ in your calculator, the result is a decimal with a value of approximately 1.4.						
For Exercises 1–6, find the approximate value for the given length to the nearest tenth.						
1. $\sqrt{5}$	2. $\sqrt{13}$	3. $\sqrt{20}$				
4. $\sqrt{17}$	5. $\sqrt{2} + \sqrt{5}$	6. $\sqrt{8} + 6$	$5 + \sqrt{10}$			

7. Is $\sqrt{8} + \sqrt{10}$ the same as $\sqrt{8 + 10}$? Explain your answer in two ways: a. Use your calculator to help give a numerical argument.

b. Use a grid and lengths of line segments to give a geometric argument.

Name	Date Class
Additional Practice (continued)	Investigation 2
	Looking for Pythagora
For Exercises 8–10, find the perimeter of each fig	ire. Express the perimeter in

For Exercises 8–10, find the perimeter of each figure. Express the perimeter in two ways: as the sum of a whole number and square roots, and as a single value after using decimal approximations to the nearest tenth for the square roots. An example is done for you.

Additional Practice (continued)

11. For each number sentence below, decide if it is true (T) or false (F):

a. $7 = \sqrt{49}$ **b.** $7 = -\sqrt{49}$

c.
$$-7 = \sqrt{49}$$
 d. $-7 = -\sqrt{49}$

12. Points A, B, C, D, and E are shown on the grid below:

Using these 5 points only, list all line segments which have the following

lengths:

 $\sqrt{2}$

 $2\sqrt{2}$

 $3\sqrt{2}$

 $4\sqrt{2}$

 $5\sqrt{2}$

13. List all the whole numbers that could be substituted for *x* so that the expression is true.

a. $4 < \sqrt{x} < 5$

b. $8 < \sqrt{x} < 9$

c. $0 < \sqrt{x} < 1$

Looking for Pythagoras

Name Date Class

• A	•	•	•	•
0	• В	۰	۰	۰
•	•	∙C	•	٠
٠	•	٠	• D	٠
•	•	0	•	● E

Investigation 2